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Abstract

We discretize some notions of the theory of asymptotic nets and of the theory of transformations
of asymptotic nets. These are the Lelieuvre formulas, the Moutard equation, the Moutard transfor-
mation, the Weingarten congruences and the Jonas formulas. It allows us to extend the theory of
reductions of the discrete version of the Darboux system, applied primarily to multidimensional
quadrilateral lattices, on the theory of discrete asymptotic nets which in turn is helpful in a dis-
cretization of some classical differential nonlinear integrable systems of physical interest, e.g. the
Ernst equation and the stationary modified Nizhnik–Veselov–Novikov system (in form which we
call the Fubini–Ragazzi system). © 2002 Published by Elsevier Science B.V.
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1. Introduction

To a given nonlinear completely integrable system of differential equationsS one can
relate many systems of difference equations which become the differential system when
appropriate limiting process is applied. It is natural task to isolate (from this set of systems
of difference equations) a system of difference equationsDS that exhibits the integrability
features like existence of a Lax pair, a Darboux–Bäcklund transformation and a permutabil-
ity theorem. Such a systemDS of difference equations we calla discrete versionof the
given systemS.
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Tel.: +48-85-7457239; fax:+48-85-7457238.
E-mail addresses:maciejun@fuw.edu.pl, maciejun@alpha.uwb.edu.pl (M. Nieszporski).

0393-0440/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
PII: S0393-0440(01)00038-9



260 M. Nieszporski / Journal of Geometry and Physics 40 (2002) 259–276

The discrete version of the classical Darboux system [11,13,18,19], which is often re-
garded as a master equation of the theory of nonlinear integrable systems, has been proposed
recently [8]. Moreover, the theory of integrable reductions of the Darboux system [49,50],
which contains the theory of reductions of transformations of the Laplace equation, is sys-
tematically being extended on the discrete case [10,13,17,32,36] and our paper belongs to
this stream. It was shown in [15] that conjugate nets (see, e.g. [11,13,18,19]) governed by the
Darboux system have a discrete counterpart, the so-called multidimensional quadrilateral
lattices governed by the discrete version of the Darboux system. The theory of integrable
reductions of the discrete version of the Darboux system (and transformations of the Laplace
equation) has been applied to the multidimensional quadrilateral lattices [10,13,17,32], but
the theory can be applied to geometric objects different from conjugate nets and their dis-
crete counterparts (multidimensional quadrilateral lattices) for instance to asymptotic nets
and their discrete counterparts (the definition of asymptotic nets and discrete asymptotic
nets will be given in Section 2). That is why we find interesting to discretize some notions
of the classical differential geometry which concerns the asymptotic nets. The main result
of the paper is a discretization of Jonas formulas [27] (Sections 9 and 10) which in turn is
helpful in a discretization of some classical integrable systems of physical interest.

Our goal is to discuss these aspects of (discrete) asymptotic nets that are responsible for
integrable phenomena. Therefore besides the Jonas formulas we discuss in Sections 3–6 a
discretization of the Moutard transformation [40] and Lelieuvre formulas [31] (Theorems
3 and 4 and Remark 5 develop some ideas of the papers [31,40]) and also we introduce in
Section 8 the notion of discrete tangent canonical fields of a discrete asymptotic net. Two
special classes of the discrete asymptotic nets have been widely discussed so far. These are
discrete analogs of surfaces with constant negative curvature (the so-calledK-surfaces, see
[5,16] and references therein) and discrete analogs of affine spheres (see [7,6,45]).

To show you our physical motivation let us recall that it was considerations on asymptotic
nets and their transformations which reveal (among others) the following integrable systems.

1.1. Fubini–Ragazzi system

By the Fubini–Ragazzi (or isothermally asymptotic [22,24,29,41]) system, which can
be related (see [21]) to either modified stationary Nizhnik–Veselov–Novikov or station-
ary Nizhnik–Veselov–Novikov (see also [25,30,37,46,48]), we understand the following
system:

(−a,u + 1
2a

2 + pb+ p,v),v = 2pq,u + qp,u,

(−b,v + 1
2b

2 + qa+ q,u),u = 2qp,v + pq,v,

a,v = b,u,

(
log

p

q

)
,uv

= 0, (1)

wherep, q, a andb are real functions of both parametersu andv. This system was pri-
marily introduced by Fubini [23]. A Darboux–Bäcklund transformation and superposition
principle were obtained by Ragazzi in the paper [41] (see also [22,24,29]). This justifies
our terminology.
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The system (1) is of interest for, as we have already mentioned it is related to the stationary
modified Nizhnik–Veselov–Novikov system, secondly, it is a generalization of the Tzitzeica
(Dodd–Bullough) equation. Indeed, on rescaling the parametersũ = f (u), ṽ = g(v) (the
tilde will be omitted) one can reduce the last equation of Eq. (1) to the condition

p = q, (2)

due to third equation of (1) we can introduce a potentialϑ such that

a = ϑ,u b = ϑ,v, (3)

and then the reduction

p = e−ϑ (4)

cause that system (1) is reducible to the Tzitzeica equation

ϑ,uv = c eϑ − e−2ϑ , (5)

wherec is a constant of integration. The discrete version of the Tzitzeica equation (5) has
been proposed in [45] (cf. [6,7]). An intriguing link between the Tzitzeica equation (discrete
version of Tzitzeica equation) and self-dual Einstein spaces via permutability theorem for
the Tzitzeica equation (discrete version of Tzitzeica equation) was established in [44,45].

The considerations contained in the present paper have allowed us to find a discrete
version of the Fubini–Ragazzi system. A detailed discussion of the discrete version of the
Fubini–Ragazzi system is beyond the frames of this article. However, in Section 11, we
argue that the discrete version of (1) is

A(22)

AH(2)
= B(11)

BH(1)
,

A(22)H

A(2)H(2)
(1 + B − Q) + Q(1)C(2) − D(1) = 0,

B(11)H

B(1)H(1)
(1 + A − P) + P(2)D(1) − C(2) = 0,

H(2)

(
B(1)

B

A

A(2)

)
(12)

�P(2) = H(1)

(
B

B(1)

A(2)

A

)
(12)

�Q(1), (6)

where a subscript in brackets denotes the increment of the parameter, for instance
f (m1,m2)(1) = f (m1 + 1,m2), f (m1,m2)(2) = f (m1,m2 + 1), f (m1,m2)(12) =
f (m1 + 1,m2 + 1), f (m1,m2)(−1) = f (m1 − 1,m2), etc., the symbol� stands for the
following operator:

�f := f(12)f

f(1)f(2)
,

and the functionsC andD are defined by

C := 1 + A(2)

H
+ B(1)P(2)

H
, D := 1 + B(1)

H
+ A(2)Q(1)

H
, (7)

while H is given by

H := 1 − P(2)Q(1). (8)



262 M. Nieszporski / Journal of Geometry and Physics 40 (2002) 259–276

1.2. Bianchi–Ernst system

The Euclidean Bianchi–Ernst system(ε = 1) or the Minkowski Bianchi–Ernst system
(ε = −1) is the following system of differential equations on real functionsN0, N1, N2 of
real parametersu andv:

(N0),uv

N0
= (N1),uv

N1
= (N2),uv

N2
, (9)

N̂ · N̂ = U(u) + V (v), (10)

whereN̂ = (N0, N1, N2) and dot stands for the scalar product

N̂ · N̂ := (N0)
2 + ε((N1)

2 + (N2)
2).

The system (more precisely its Euclidean case) was introduced by Bianchi in [2,3] (see
also [39]) and describes the so-called Bianchi surfaces, a generalization of mentioned
K-surfaces. It was Bianchi, who found a Darboux–Bäcklund transformation and super-
position principle for solutions of the system (9) and (10). That is why the system takes its
name after Bianchi. The name of Ernst appears due to the fact that in the Minkowski case
(ε = −1) on definingni = Ni/

√
r (wherer = N̂ · N̂ ), making stereo-graphical projection

ξ = n1 + in2

1 + n0
, (11)

and finally changing independent variables

u = ρ + iz, v = ρ − iz, (12)

we come to the Ernst equation

(ξ ξ̄ − 1)
(
ξ,ρρ + ξ,zz+ r,ρ

r
ξ,ρ + r,z

r
ξ,z

)
= 2ξ̄ ((ξ,ρ)

2 + (ξ,z)
2), r,ρρ + r,zz = 0.

(13)

This observation would appear in several papers [33,43,47] just after the result by Bianchi
was revised [9,35]. Let us recall that every solution to Ernst equation describes an axisym-
metric stationary vacuum Einstein field [20]. This is another reason why we find interest-
ing to take up the subject of discretization of asymptotic nets (it yields hints toward the
discretization of the Bianchi–Ernst system).

A discrete version of the system (9) and (10) (as it will be shown in the forthcoming
paper [14]) is the system on real functionsN0, N1, N2 of integer parametersm1 andm2

N0(12) + N0

N0(1) + N0(2)
= N1(12) + N1

N1(1) + N1(2)
= N2(12) + N2

N2(1) + N2(2)
, (14)

(N̂(12) + N̂) · (N̂(1) + N̂(2)) = 4U(m1) + 4V (m2). (15)
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2. Asymptotic nets in the affine space A3 and their discretization

We start from basic definitions. Bya regular netin the affine spaceA3 we understand
the imageN of an open subsetU of R2 under the diffeomorphism

x : R2 ⊃ U → N ⊂ A3, U 
 (u, v)
x�→p ∈ N (16)

together with a natural structure of lines distinguished by this map, i.e. with two one-parameter
families of curves the first one consisting of the curvesu = const. and the second one con-
sisting of the curvesv = const. The curves we shall callthe lines of the net. A regular net
we call anasymptotic netif at every pointp of the net we have: osculating planes atp of
the two lines of the net that pass throughp coincide. It means that at every point of the
asymptotic net we have (in the whole paper�r(u, v) stands for the radius vector of the net)

�r,uu = a�r,u + p�r,v, �r,vv = q�r,u + b�r,v. (17)

From the equality�r,uuvv = �r,vvuu, we obtain that the functionsa, b, p andq satisfy (pro-
vided that at every point of the net{�r,u; �r,v; �r,uv} is a basis) the differential constraints
(compatibility conditions)

(−a,u + 1
2a

2 + pb+ p,v),v = 2pq,u + qp,u,

(−b,v + 1
2b

2 + qa+ q,u),u = 2qp,v + pq,v,

a,v = b,u ⇒ a = ϑ,u, b = ϑ,v. (18)

Since Eqs. (17) are invariant with respect to affine transformations of the space they can be
used to discuss the asymptotic nets in the affine geometry.

By a regular discrete netin A3, we understand the image ofZ2 under the map

x : Z2 → A3, Z
2 
 (m1,m2) �→ p ∈ A3 (19)

together with:

• structure of discrete lines distinguished by this map, i.e. linesm1 = const. andm2 =
const. the so-calleddiscrete linesof the discrete net;

• a regularity condition: points�R, �R(1) and �R(2) are not collinear( �R(m1,m2) stands for
radius vector of the discrete net).

A discrete net we calla discrete asymptotic net(seeSchmiegliniennetzein [42]) if the
plane through the points�R(m1,m2)(−1), �R(m1,m2), �R(m1,m2)(1) (the osculating plane to
a line from the first family of lines at the point�R(m1,m2)) coincides with the plane through
the points�R(m1,m2)(−2), �R(m1,m2), �R(m1,m2)(2) (the osculating plane to a line from the
second family of lines at the point�R(m1,m2)) at every point�R(m1,m2) of the net. Note
that discrete asymptotic nets are the exceptional case (among other discrete nets) when a
tangent plane to the point of the net is well defined.

From the definition of discrete asymptotic nets we can write

�R(11) − �R(1) = A( �R(1) − �R) + P( �R(12) − �R(1)),

�R(22) − �R(2) = B( �R(2) − �R) + Q( �R(12) − �R(2)) (20)
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or

�R(112) − �R(12) = A(2)

H
( �R(12) − �R(2)) + P(2)B(1)

H
( �R(12) − �R(1)),

�R(221) − �R(12) = B(1)

H
( �R(12) − �R(1)) + Q(1)A(2)

H
( �R(12) − �R(2)), (21)

whereH is given by Eq. (8). The equality�R(1122) = �R(2211) gives the following compati-
bility conditions (provided that{( �R(1) − �R), ( �R(2) − �R), ( �R(12) − �R)} form a basis at every
point of the net)

A(22)

AH(2)
= B(11)

BH(1)
,

A(22)H

A(2)H(2)
(1 + B − Q) + Q(1)C(2) − D(1) = 0,

B(11)H

B(1)H(1)
(1 + A − P) + P(2)D(1) − C(2) = 0, (22)

whereC andD are defined by Eq. (7).

3. Lelieuvre formulas. Asymptotic nets in equi-affine space eA3

Let us enrich the affine space with volume formVol (by Vol∗, we denote the dual form
of Vol). It enable us to construct cross-product from ordered pair of linearly independent
vectors (say(�a, �b)), i.e. elementN̂ ∈ T ∗eA3 such that〈N̂ |�a〉 = 0 = 〈N̂ |�b〉 and〈N̂ |�c〉 =
Vol{�a; �b; �c} for every �c ∈ TeA3. The following theorem provides a linear procedure of
constructing asymptotic nets.

Theorem 1 (Lelieuvre [34]).

1. If an asymptotic net�r(u, v) is given and if a conormal field̂n(u, v) to the net respects
condition Vol∗(n̂; n̂,u; n̂,v) �= 0 then there exists a conormal field̂N(u, v) such that

N̂,uv = f (u, v)N̂, (23)

�r,u = N̂,u × N̂, �r,v = N̂ × N̂,v. (24)

2. LetN̂ = [N0, N1, N2] is a solution to(23)obeying Vol∗(N̂; N̂,u; N̂,v) �= 0.Then�r(u, v)
obtained from(24) is a radius vector of a regular asymptotic net.

The formulas (24) are called Lelieuvre formulas. The Lelieuvre formulas are invariant
with respect to equi-affine transformations of the space and therefore can be used to discuss
asymptotic nets in equi-affine geometry.

On using the Lelieuvre formulas Eqs. (17) and (23) take the form

N̂,uu = aN̂,u − pN̂,v + γ N̂, N̂,vv = −qN̂,u + bN̂,v + δN̂, N̂,uv = f N̂.

(25)
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Compatibility conditions of (25) are Eq. (18) together with

γ = p,v + pϑ,v, δ = q,u + qϑ,u, f = ϑ,uv + pq. (26)

4. The Moutard equation and the Moutard transformation

In connection with the previous section we pay our attention to the equation

N,uv = FN, (27)

which is calledthe Moutard equationand is a member of a class of the Laplace equations
with the equal Laplace invariants (see, e.g. [1]). From the point of view of integrable systems
the most important is that the form of the equation is covariant under the followingMoutard
transformation[38]. Let a functionΘ will be given. Then transformationN → N ′ given
by

(N ′Θ),u = NΘ,u − N,uΘ, (N ′Θ),v = −NΘ,v + N,vΘ (28)

is an invertible map between the solution space of Eq. (27) and the solution space of an
equation

N ′
,uv = f ′N ′, (29)

where

f = Θ,uv

Θ
, f ′ = (1/Θ),uv

1/Θ
. (30)

If we take three solutions [N0, N1, N2] to (27), we obtain after a Moutard transforma-
tion a three solution [N ′

0, N
′
1, N

′
2] to (29). Owing to the Lelieuvre formulas we receive a

transformation between asymptotic nets (cf. Section 7).
The question arises what is a discrete version of the Moutard equation? The permutability

theorem for the Moutard transformations in its classical form [4,22] reinterpreted as a
integrable difference equation (see [45] and references therein) suggests that a discrete
counterpart of the Moutard equation is

N(12) − N = f (N(1) − N(2)), (31)

and in the paper [40] Eq. (31) is treated as a discrete version of the Moutard equation. But
we can straightforward modify (as it was suggested to me by Doliwa) the classical Moutard
transformation.

Theorem 2. Let a solution of the Moutard equation(27)N and its two Moutard transforms:
the first one denoted byN(1) (superscript instead of primeN ′ in formulas(28)!)governed by
(28)with functionΘ(1) instead of functionΘ and the second one denoted byN(2) governed
by (28) with mutually interchanged parametersu ↔ v, with functionΘ(2) instead of
functionΘ, are given. Then functionN(12) given by

N(12) = −N + Θ(1)Θ(2)

ν
(N(2) + N(1)), (32)
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whereν is given by the quadratures

ν,u = Θ(2)Θ(1)
,u − Θ(1)Θ(2)

,u, ν,v = −Θ(2)Θ(1)
,v + Θ(1)Θ(2)

,v

is solution of Moutard equation

N(12)
,uv = f (12)N(12),

where

f (12) = f + ν

(
1

ν

)
,uv

+ 1

ν
(Θ(2)

,uΘ
(1)

,v − Θ(1)
,uΘ

(2)
,v).

The proof is analogous to the classical one. So Eq. (32) suggests that the Moutard equation
is

N(12) + N = F(N(2) + N(1)). (33)

As we shall see either Eq. (31) or Eq. (33) can be treated as a discrete version of the Moutard
equation and both are useful in the construction of discrete asymptotic nets.

5. Discrete Moutard transformation and discrete Moutard equation

We start our discrete considerations from recalling thediscrete Moutard transformation
which one can find in slightly modified form (suitable for Eq. (31)) in [40]. Namely, one
can by direct calculation see that transformationN → N ′ given by

+(1)(N
′Θ) = N+(1)Θ − Θ+(1)N, +(2)(N

′Θ) = Θ+(2)N − N+(2)Θ (34)

(where+(i)f = f(i) − f ) maps from the solution space of adiscrete Moutard equation
(33) into solution space of another discrete Moutard equation

N ′
(12) + N ′ = F ′(N ′

(1) + N ′
(2)), (35)

where

F = Θ(12) + Θ

Θ(1) + Θ(2)
, F ′ = (1/Θ)(12) + 1/Θ

(1/Θ)(1) + (1/Θ)(2)
. (36)

So we have to our disposal a transformation which exhibits integrable features.
We can introduce for the discrete Laplace equationψ(12) + αψ(1) + βψ(2) + γψ = 0

(Lψ = 0 for short) which is form-invariant under the gaugeψ → (1/A(12))L(Aψ) the
following invariants of the gauge:

h = α(12)

α

γ(1)

γ(12)
, k = β(12)

β

γ(2)

γ(12)
.

The choice of invariants was inspired by the fact that gauge independent characterization
of the discrete Moutard equation isk = h just like in the continuous case. Either Eq. (31)
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or Eq. (33) satisfy this condition. The discrete version of the theorem (2) (independently
found in [12]) is the following theorem.

Theorem 3. Let a solution of discrete Moutard equation(33)N and its two transforms: the
first one denoted byN(1) governed by(34)with functionΘ(1) instead ofΘ and the second
one denoted byN(2) governed by(34)with mutually interchanged parameters(1) ↔(2) with
functionΘ(2) instead ofΘ, are given. Then functionN(12) obtained from

N(12) = −N + Θ(1)Θ(2)

ν
(N(2) + N(1)), (37)

whereν is given by

+(1)ν = Θ(2)Θ
(1)
(1) − Θ(1)Θ

(2)
(1) , +(2)ν = −Θ(2)Θ

(1)
(2) + Θ(1)Θ

(2)
(2)

is solution of the discrete Moutard equation

N
(12)
(12) + N(12) = F (12)(N

(12)
(1) + N

(12)
(2) ),

where

F (12) = ν(1)ν(2)

ν(12)ν
F.

6. Discrete Lelieuvre formulas

Let us consider a vector̂N = [N0, N1, N2] of T ∗eA3 components of which satisfy the
discrete Moutard equation (33)

N̂(12) + N̂ = F(N̂(1) + N̂(2)). (38)

Hence, we have

(N̂(12) + N̂) × (N̂(1) + N̂(2)) = 0, (39)

and after some calculations we obtain

+(2)(+(1)N̂ × N̂) = +(1)(N̂ × +(2)N̂). (40)

From the above we infer that there exists vector�r such that

+(1)�r = +(1)N̂ × N̂, +(2)�r = N̂ × +(2)N̂ . (41)

In analogy to the continuous case we call Eq. (41) discrete Lelieuvre formulas for as it
is easy to show the vector�r can be interpreted as a radius vector of a discrete asymptotic
net. Indeed if�r describes a net obtained from (41) (it is assumed that (38) holds) then
〈N̂ |+(1)�r〉 = 0 = 〈N̂ |+(2)�r〉 and in this sensêN is conormal to the net. For any field̂n
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proportional toN̂ , we have

〈n̂|+(1)�r〉 = 0, 〈n̂|+(2)�r〉 = 0, 〈+(1)n̂|+(1)�r〉 = 0, 〈+(2)n̂|+(2)�r〉 = 0.

(42)

The conditions (42) are equivalent to condition that�r, �r(1), �r(2), �r−(1) , �r−(2) are coplanar
and hence the discrete net is asymptotic. Inversely, if a discrete asymptotic net is given
then one can find the discrete conormal fieldN̂ such that (41) holds. Indeed, if a discrete
asymptotic net is given then (42) holds and we infer that+(1)�r = s+(1)n̂ × n̂ and+(2)�r =
t n̂ × +(2)n̂. From the equalities〈n̂|+(1)+(2)�r〉 = 〈n̂|+(2)+(1)�r〉 and〈n̂(12)|+(1)+(2)�r〉 =
〈n̂(12)|+(2)+(1)�r〉, we infer that

s2s = t1t (43)

provided thatVol∗(n̂(1); n̂(12); n̂) �= 0 �= Vol∗(n̂(2); n̂(12); n̂). It means that there exists
potentialr such thats = r(1)r andt = r(2)r. On introducingN̂ = rn̂ we come to formulas
(41). Hence we have the following theorem.

Theorem 4 (Discrete Lelieuvre formulas).

1. If the asymptotic net�r is given and if a discrete conormal field of the netn̂ respect the
conditions Vol∗(n̂(1); n̂(12); n̂) �= 0 �= Vol∗(n̂(2); n̂(12); n̂) then there exist a conormal
field N̂ such that Eqs.(41)and(38)hold.

2. LetN̂ = [N0, N1, N2] is solution to(38)obeying Vol∗(N̂(1); N̂(12); N̂) �= 0 �= Vol∗(N̂(2);
N̂(12); N̂). Then�r obtained from(41) is the radius vector of a discrete asymptotic net.

Remark 5. Since Eq. (43) is quadratic we have an alternative way of description of discrete
asymptotic nets. Namely, we can takes = r(1)r andt = −r(2)r. Then the discrete Lelieuvre
formulas take the form

+(1)�r = +(1)N̂ × N̂, +(2)�r = +(2)N̂ × N̂, (44)

while the Moutard equation is

N̂(12) − N̂ = F̃ (N̂(1) − N̂(2)). (45)

Note that formulas (41) have more natural continuous limit than formulas (44).

Using discrete Lelieuvre formulas (41), we can rewrite Eqs. (20) and (38) as

N̂(11) − N̂(1) = A(N̂(1) − N̂) − P(N̂(12) − N̂(1)) + γN1,

N̂(22) − N̂(2) = B(N̂(2) − N̂) − Q(N̂(12) − N̂(2)) + δN2,

N̂(12) + N = F(N̂(1) + N̂(2)). (46)

Compatibility conditions of (46) give Eq. (22) together with

FF(1) = A(2)

AH
, FF(2) = B(1)

BH
, γ = −1 − A − P + C

F(1)
,

δ = −1 − B − Q + D

F(2)
. (47)
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7. Weingarten congruences and their discretization

By a (rectilinear) congruencein A3 parameterized by coordinates(u, v), we understand
imageK of an open subsetU of R2 under the diffeomorphism

x : R2 ⊃ U → K ⊂ LA3, U 
 (u, v) �→ p ∈ K, (48)

whereLA3 denotes the set of all straight lines ofA3. We restrict ourselves to congruences
such that for everyp ∈ K there exists exactly two developable surfaces built of the lines of
the congruence which pass throughp. The curves of regression of the developable surfaces
lie on twofocal surfaces. A map between the two focal surfaces via lines of the congruence
is calledfocal map(cf. [22]).

Remark 6. By definition lines of a congruence are tangent to both focal surfaces.

An asymptotic net that lie on a focal surface of a congruence we callan asymptotic focal
net. A congruence for which an asymptotic focal net under the focal map is an asymptotic
focal net again is calledWeingarten(or W-)congruences. We use only asymptotic parame-
terization of W-congruence, i.e. parameters(u, v) imprint asymptotic nets on focal surfaces
of the W-congruence. We have the following theorem.

Theorem 7 (Guichard [26,51]).

1. Let an asymptotic netN is given and letN ′ is asymptotic net obtained fromN via a
Moutard transformation. Then there is a rigid motion ofN ′ such thatN andN ′ become
asymptotic focal nets of a W-congruence.

2. Let a W-congruence is given. There exist a Moutard transformation which maps one
asymptotic focal net of the W-congruence to the second asymptotic focal net of the
W-congruence.

We refer to [22] for proof.
On the discrete level one can define adiscrete congruencein A3 by injective map

x : Z2 → LA3, Z
2 
 (m1,m2) �→ p ∈ LA3, (49)

but is there an analog of focal nets, is this the right analog of continuous congruence?
Doliwa and Santini [15] proposed to add condition that two consecutive lines of the con-
gruence intersect. This allowed them to establish a discrete analog of mapping between
conjugate nets and it seemed to be discrete analog of focal mapping. In what follows
we propose the notion of discrete Weingarten (or W-)congruences which does not fit
to Doliwa and Santini scheme (the discrete W-congruences are not special case of the
congruences proposed by Doliwa and Santini). The crucial observation is the following
remark.

Remark 8. Let us replaceΘ and N̂ ′ in formulas (34) byΘ(1) and N̂ (1) (superscript!),
respectively. Let us replaceΘ andN̂ ′ in formulas (34) with interchanged indices(1) ↔(2)
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byΘ(2) andN̂ (2), respectively. We also introduce operator+(i) by+(i)f = f (i) −f . Then
a consequence of the discrete Moutard transformation (34) is

+(1)�r = +(1)N̂ × N̂ + �c1, +(2)�r = N̂ × +(2)N̂ + �c2, (50)

where�c1 and�c2 are constant vectors.

One can easily achieve above result by the subsequent cross multiplication of both sides
of discrete Moutard transformation (34) bŷN , N̂(1), N̂(2), N̂ (1) and N̂ (2). From equa-
tions obtained in this way one can infer+(1)+

(1)�r = +(1)(+
(1)N̂ × N̂), +(2)+

(1)�r =
+(2)(+

(1)N̂ × N̂), +(1)+
(1)�r = −+(1)(+

(2)N̂ × N̂) and+(2)+
(1)�r = −+(2)(+

(2)N̂ × N̂)

and in result (50).
By rigid motion of transformed netsN (1) andN (2) we can achieve�c1 = 0 = �c2

+(1)�r = +(1)N̂ × N̂, +(2)�r = N̂ × +(2)N̂ . (51)

The vector�r(1) − �r lies in the tangent planes of netN andN (1) at points�r and�r(1). So, by
analogy to the continuous case we define discrete W-congruences.

Proposition 9 (Discrete W-congruences).Let two radius vectors of discrete asymptotic
nets�r and�r(i) are related by one of the formulas(51) (i = 1or 2). A discrete congruence
that every linel(m1,m2) passes through the points�r(m1,m2) and �r(i)(m1,m2) is called
discrete Weingarten(or W-)congruence.

On applying permutability theorem for discrete Moutard transformation to the discrete
conormal fieldN̂ , we build from a given point�r an asymptotic net (superscripts are thought
to be shifts). Indeed, from (37) we get(N̂ (12) + N̂) × (N̂ (1) + N̂ (2)) = 0 and (51) are just
Lelieuvre formulas.

Finally, we would like to mention that rectilinear congruences as two-parameter sub-
sets of line geometry are represented by surfaces (nets) in the Plücker–Klein quadric.
W-congruences parameterized asymptotically are represented by conjugate nets in the
Plücker–Klein quadric [19]. In the paper [12] it was proved that discrete W-congruences
proposed in our paper are represented by two-dimensional quadrilateral lattices in the
Plücker–Klein quadric.

8. Tangent canonical fields and their discretization

Let us introducethe tangent canonical fields�W and �Z of the asymptotic net

�W = e−ϑ �r,u, �Z = e−ϑ �r,v. (52)

These fields are tangent to the net and moreover, Eq. (17) takes especially simple form

�W,u = p �Z, �Z,v = q �W. (53)

These are equations of linear problem of bi-component KP hierarchy what justifies our
interest.
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As in continuous case we introducethe discrete canonical tangent fields�W and �Z of the
discrete asymptotic net

�R(12) − �R(2) = α �W, �R(12) − �R(1) = β �Z, (54)

where functionsα andβ are defined by

β(2) = B(1)

H
β, α(1) = A(2)

H
α. (55)

Now Eq. (20) in terms of fields�W and �Z are

+(1) �W = P �Z, +(2) �Z = Q �W, (56)

where

P = P(2)B(1)

A(2)

β

α
, Q = Q(1)A(2)

B(1)

α

β
. (57)

9. Jonas formulas

In 1920, Jonas [27] published a supplement of the theory of transformations of asymp-
totic nets. It allowed him to find a few system of differential equations which posses the
Darboux–Bäcklund transformation and superposition principle for solutions [27–29]. Here,
we recall the Jonas formulas and we discretize them in the next section.

Let an asymptotic net is given by Lelieuvre representationN̂ (23) and (24). We have the
natural basis{N̂; N̂,u; N̂,v} at each point of the net. Let us split the Moutard transformN̂ ′

of N̂ into components with respect to the basis

ΘN̂ ′ = x1N̂,u + x2N̂,v + x3N̂ . (58)

On inserting (58) into the Moutard transformation (28) due to fact that{N̂; N̂,u; N̂,v} is a
basis the coefficientsxi have to satisfy the following system:

∂

∂u




x1

x2

x3


 =




−ϑ,u 0 −1

p 0 0

−(p,v + pϑ,v) −(pq+ ϑ,uv) 0







x1

x2

x3


 +




−Θ

0

Θ,u


 ,

∂

∂v




x1

x2

x3


 =




0 q 0

0 −ϑ,v −1

−(pq+ ϑ,uv) −(q,u + qϑ,u) 0







x1

x2

x3


 +




0

Θ

−Θ,v


 . (59)

The above system is compatibleiff functionsp, q andϑ satisfy the differential constraint
(18) andΘ,uv = (pq+ϑ,uv)Θ (compare (30)). The covector̂N ′ satisfies Eq. (25), but with
new functionsp′, q ′ andϑ ′ which are related to the old ones via

p′ = −p + x2
s

Λ
, q ′ = −q + x1

t

Λ
, eϑ

′ = const.
eϑΛ

Θ2
, (60)
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where

s = Θ,uu − aΘ,u + pΘ,v − (pb+ p,v)Θ,

t = Θ,vv + qΘ,u − bΘ,v − (qa+ q,u)Θ,

Λ = x1Θ,u + x2Θ,v + x3Θ. (61)

Direct calculations show that

Λ,u = x1s, Λ,v = x2t, (62)

t,u = qs, s,v = pt. (63)

As it was shown by Jonas [27] to construct a second focal surface of W-congruence from
the first one it is sufficient to find a solution of

x2,u = px1, x1,v = qx2 (64)

these are the two of Eqs. (59). Let us draw your attention that in fact we have to find an
additional solution of the equations of tangent canonical fields.

10. Discrete Jonas formulas

We extend the consideration of the previous section on the discrete level. LetN̂ ′ be a
transform ofN̂ under the discrete Moutard transformation. On decomposingN̂ ′ with respect
to the basis{N̂; N̂(1); N̂(2)}

ΘN̂ ′ = x1N̂(1) + x2N̂(2) + x3N̂, (65)

we obtain after substitution into discrete Moutard transformation that coefficient{xi} satis-
fies the following system (analogue of (59)):

x1
(1) = − 1

A

(
1

F
x2 + x3 + Θ(1)

)
, x3

(1) + (γ + 1 + A + P)x1
(1) = x1 − x2 − Θ,

x2
(1) − Px1

(1) = 1

F
x2, (66)

x2
(2) = − 1

B

(
1

F
x1 + x3 − Θ(2)

)
, x3

(2) + (δ + 1 + B + Q)x1
(2) = x2 − x1 + Θ,

x1
(2) − Qx2

(2) = 1

F
x1. (67)

One can show that covector̂N ′ satisfies the primed analogue of (46) and primed functions
are related to non-primed ones via

P ′ =
(

−P + S

L

x2

F

)
Θ(12)

Θ(11)
, Q′ =

(
−Q + T

L

x1

F

)
Θ(12)

Θ(22)
,

A′ = A

(
1 + S

L
x1
(1)

)
Θ

Θ(11)
, B ′ = B

(
1 + T

L
x2
(2)

)
Θ

Θ(22)
, (68)
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where

S = Θ(11) − (γ + 1 + A + P)Θ(1) + AΘ + PΘ(12),

T = Θ(22) − (δ + 1 + B + Q)Θ(2) + BΘ + QΘ(12),

L = x1Θ(1) + x2Θ(2) + x3Θ. (69)

Direct calculations shows that (analogue of (62))

+(1)L = x1
(1)S, +(2)L = x2

(2)T , (70)

T(1) = F(2)T + Q(1)F(1)S, S(2) = F(1)S + P(2)F(2)T . (71)

On definingαII andβ II via

β II
(1) = F(2)β

II , αII
(2) = F(1)α

II , (72)

and introducing

S := S

αII , T := T

β II , (73)

Eq. (71) take the form (analogue of (63))

+(1)T = Q(1)F(1)

F(2)

αII

β II S, +(2)S = P(2)F(2)

F(1)

β II

αII T. (74)

Let us rewrite the third equation of (66) and (67) in the form

x1
(12) = 1

HF(1)
x1
(1) + Q(1)

HF(2)
x2
(2), x2

(12) = 1

HF(2)
x2
(2) + P(2)

HF(1)
x1
(1). (75)

On introducing

w :=
x1
(1)

αI , z :=
x2
(2)

β I , (76)

where functionsαI andβ I are defined by

β I
(1) = 1

HF(2)
β I , αI

(2) = 1

HF(1)
αI , (77)

we can write Eq. (75) in the form

+(1)z = P(2)F(2)

F(1)

αI

β I w, +(2)w = Q(1)F(1)

F(2)

β I

αI z. (78)

It is easy to see that owing to fact thatβ I andαI are given up to multiplication by function
of single variable, i.e.αI → αIgI(m2) andβ I → β If I(m1) (see (77)), Eq. (78) can be put
in the form

+(1)z = Pw, +(2)w = Qz. (79)
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Indeed, it is enough to observe that

�

(
P

(P(2)F(2)/F(1))(αI/β I)

)
=1⇒

(
P

(P(2)F(2)/F(1))(αI/β I)

)
= U I(m1)V

I(m2),

�

(
Q

(Q(1)F(1)/F(2))(β I/αI)

)
=1⇒

(
Q

(Q(1)F(1)/F(2))(β I/αI)

)
= U II (m1)V

II (m2),

PQ = P(2)Q(1) = P(2)F(2)

F(1)

Q(1)F(1)

F(2)
⇒ PQ

P(2)Q(1)
= U I(m1)V

I(m2)

U II (m1)V II (m2)
= 1, (80)

hence on settinggI(m2) = 1/V I(m2) andf I(m1) = U I(m1), we obtain (79). Therefore
functionsw andz and components of discrete canonical fields satisfy the same equation
(compare Eqs. (56) and (79)) just as in the continuous case functionx1 andx2 and compo-
nents of canonical fields satisfy the same equation (compare Eqs. (53) and (64)).

11. The discrete Fubini–Ragazzi system

We apply results from the previous section to obtain a discrete version of the Fubini–
Ragazzi system (1). Namely, one can interpret the equations of the tangent canonical fields
(53) of an asymptotic net and the discrete tangent canonical fields (53) of a discrete asymp-
totic net as equations of tangent vectors of two-dimensional conjugate net and quadrilateral
lattice, respectively (see, e.g. [17,18]). Therefore one can apply theory of reductions of
developed for conjugate nets [49,50] and quadrilateral lattices [10,13,17,32]. In the re-
cent paper [17] Doliwa and Santini have introduced the notion of symmetric reductions of
discrete multidimensional quadrilateral lattices.

Since symmetric reduction (see [17]) imposed on the tangent canonical fields (53) of an
asymptotic net, i.e.(

log
p

q

)
,uv

= 0

together with compatibility conditions of the asymptotic net (18) gives Fubini–Ragazzi
system (1) we conclude that symmetric reduction (see Proposition 4.8 of paper [17]) imposed
on the discrete tangent canonical fields (56) of a discrete asymptotic net

�
P

Q
= H(2)

H(1)

together with Eq. (22) gives the discrete version of the Fubini–Ragazzi system (6). The
Darboux–Bäcklund transformation of the discrete Fubini–Ragazzi system was established
by us so far. Since we are preparing the extended exposition of the Fubini–Ragazzi system
and its discrete version we are hanging up the discussion at this moment.

As we have suggested the theory of reductions of the lattice Darboux system [8], which
was applied primarily for quadrilateral lattices [10,13,17,32], one can extend for theory of
discrete asymptotic nets. In particular, others classical integrable systems [24,27,28] can be
discretized in this way.
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